Berry phase mechanism of the anomalous Hall effect in a disordered two-dimensional magnetic semiconductor structure
نویسندگان
چکیده
The anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gate-control of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHE in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured.
منابع مشابه
شبیه سازی اثر بی نظمی و میدان مغناطیسی بر ترابرد کوانتومی نانوساختارهای دو بعدی مدل شده با تقریب تنگابست
In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding ...
متن کاملTopological Hall effect and Berry phase in magnetic nanostructures.
We discuss the anomalous Hall effect in a two-dimensional electron gas subject to a spatially varying magnetization. This topological Hall effect does not require any spin-orbit coupling and arises solely from Berry phase acquired by an electron moving in a smoothly varying magnetization. We propose an experiment with a structure containing 2D electrons or holes of diluted magnetic semiconducto...
متن کاملAnomalous Hall effect in paramagnetic two-dimensional systems
We investigate the possibility of observing the anomalous Hall effect in paramagnetic two-dimensional systems. We apply the semiclassical equations of motion to carriers in the conduction and valence bands of wurtzite and zinc-blende quantum wells in the exchange field generated by magnetic impurities and we calculate the anomalous Hall conductivity based on the Berry phase corrections to the c...
متن کاملAnomalous Hall effect
We present a review of experimental and theoretical studies of the anomalous Hall effect (AHE), focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical work, both playing a crucial role, has been at the heart of these advances. ...
متن کاملScattering mechanism of nonmagnetic phase on nano diluted magnetic semiconductors (DMS)
This paper shows the scattering mechanism at diluted magneticsemiconductors. The doped magnetic atom produces a scattering potential due to becoupled of itinerant carrier spin of host material with magnetic momentum of the dopedmagnetic atom. Formulas of scattering event were rewritten by the plane waveexpansion and then the electron mobility of DMS was calculated. Calculations showKondo effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015